首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   30篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2015年   2篇
  2014年   6篇
  2013年   5篇
  2012年   8篇
  2011年   6篇
  2010年   9篇
  2008年   5篇
  2007年   9篇
  2006年   7篇
  2005年   8篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2001年   6篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   5篇
  1988年   6篇
  1987年   6篇
  1986年   5篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1980年   3篇
  1979年   3篇
  1977年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有145条查询结果,搜索用时 171 毫秒
91.
SIRT1 is a metabolic sensor and regulator in various mammalian tissues and functions to counteract metabolic and age-related diseases. Here we generated and analyzed mice that express SIRT1 at high levels specifically in skeletal muscle. We show that SIRT1 transgenic muscle exhibits a fiber shift from fast-to-slow twitch, increased levels of PGC-1α, markers of oxidative metabolism and mitochondrial biogenesis, and decreased expression of the atrophy gene program. To examine whether increased activity of SIRT1 protects from muscular dystrophy, a muscle degenerative disease, we crossed SIRT1 muscle transgenic mice to mdx mice, a genetic model of Duchenne muscular dystrophy. SIRT1 overexpression in muscle reverses the phenotype of mdx mice, as determined by histology, creatine kinase release into the blood, and endurance in treadmill exercise. In addition, SIRT1 overexpression also results in increased levels of utrophin, a functional analogue of dystrophin, as well as increased expression of PGC-1α targets and neuromuscular junction genes. Based on these findings, we suggest that pharmacological interventions that activate SIRT1 in skeletal muscle might offer a new approach for treating muscle diseases.  相似文献   
92.
The German, F. Blum, introduced formalin as a fixative in 1893. Formalin rapidly became popular for hardening and preserving gross human and animal specimens. As a result, microscopy for diagnostic pathology by combining paraffin embedding and formalin fixation was developed. Alcohol-based fixatives have coagulation of proteins as their main preservative effect. Because there is no cross-linking, immunostaining is not compromised, and DNA and RNA is not damaged. Ethyl alcohol was used by Dutch scientists of the 18th century, but was replaced by the cheaper formalin. Addition of low molecular weight polyethylene glycol (PEG) optimized the coagulant fixative, Kryofix. The polyethylene glycol prevents excessive hardening and enhances the speed of coagulation of proteins. Kryofix was used on a large scale for skin biopsies in Leiden between 1987 and 2001. DNA preservation by the formulated coagulant fixative, BoonFix, is related to the concentration of ethyl alcohol, PEG and acetic acid. BoonFix has been used since 2004 in Leiden for over 40,000 diagnostic skin biopsies and more than 100,000 cervical samples. A literature review and three decades of experience with coagulant, formalin-free fixatives in pathology suggest that when health authorities realize that formalin invalidates expensive tests, it might eventually be eliminated legislatively from diagnostic pathology. Finally, coagulant fixation is optimal for microwave histoprocessing where ethyl alcohol is followed by isopropanol.  相似文献   
93.
Sir2 is an NAD-dependent deacetylase that connects metabolism with longevity in yeast, flies, and worms. Mammals have seven Sir2 homologs (SIRT1-7). We show that SIRT4 is a mitochondrial enzyme that uses NAD to ADP-ribosylate and downregulate glutamate dehydrogenase (GDH) activity. GDH is known to promote the metabolism of glutamate and glutamine, generating ATP, which promotes insulin secretion. Loss of SIRT4 in insulinoma cells activates GDH, thereby upregulating amino acid-stimulated insulin secretion. A similar effect is observed in pancreatic beta cells from mice deficient in SIRT4 or on the dietary regimen of calorie restriction (CR). Furthermore, GDH from SIRT4-deficient or CR mice is insensitive to phosphodiesterase, an enzyme that cleaves ADP-ribose, suggesting the absence of ADP-ribosylation. These results indicate that SIRT4 functions in beta cell mitochondria to repress the activity of GDH by ADP-ribosylation, thereby downregulating insulin secretion in response to amino acids, effects that are alleviated during CR.  相似文献   
94.

Background  

In the tephritids Ceratitis, Bactrocera and Anastrepha, the gene transformer provides the memory device for sex determination via its auto-regulation; only in females is functional Tra protein produced. To date, the isolation and characterisation of the gene transformer-2 in the tephritids has only been undertaken in Ceratitis, and it has been shown that its function is required for the female-specific splicing of doublesex and transformer pre-mRNA. It therefore participates in transformer auto-regulatory function. In this work, the characterisation of this gene in eleven tephritid species belonging to the less extensively analysed genus Anastrepha was undertaken in order to throw light on the evolution of transformer-2.  相似文献   
95.

Background  

Hexamerins are hemocyanin-derived proteins that have lost the ability to bind copper ions and transport oxygen; instead, they became storage proteins. The current study aimed to broaden our knowledge on the hexamerin genes found in the honey bee genome by exploring their structural characteristics, expression profiles, evolution, and functions in the life cycle of workers, drones and queens.  相似文献   
96.
97.

Background

SIRT1, a NAD-dependent deacetylase, has diverse roles in a variety of organs such as regulation of endocrine function and metabolism. However, it remains to be addressed how it regulates hormone release there.

Methodology/Principal Findings

Here, we report that SIRT1 is abundantly expressed in pituitary thyrotropes and regulates thyroid hormone secretion. Manipulation of SIRT1 level revealed that SIRT1 positively regulated the exocytosis of TSH-containing granules. Using LC/MS-based interactomics, phosphatidylinositol-4-phosphate 5-kinase (PIP5K)γ was identified as a SIRT1 binding partner and deacetylation substrate. SIRT1 deacetylated two specific lysine residues (K265/K268) in PIP5Kγ and enhanced PIP5Kγ enzyme activity. SIRT1-mediated TSH secretion was abolished by PIP5Kγ knockdown. SIRT1 knockdown decreased the levels of deacetylated PIP5Kγ, PI(4,5)P2, and reduced the secretion of TSH from pituitary cells. These results were also observed in SIRT1-knockout mice.

Conclusions/Significance

Our findings indicated that the control of TSH release by the SIRT1-PIP5Kγ pathway is important for regulating the metabolism of the whole body.  相似文献   
98.
Circadian rhythms govern a large array of metabolic and physiological functions. The central clock protein CLOCK has HAT properties. It directs acetylation of histone H3 and of its dimerization partner BMAL1 at Lys537, an event essential for circadian function. We show that the HDAC activity of the NAD(+)-dependent SIRT1 enzyme is regulated in a circadian manner, correlating with rhythmic acetylation of BMAL1 and H3 Lys9/Lys14 at circadian promoters. SIRT1 associates with CLOCK and is recruited to the CLOCK:BMAL1 chromatin complex at circadian promoters. Genetic ablation of the Sirt1 gene or pharmacological inhibition of SIRT1 activity lead to disturbances in the circadian cycle and in the acetylation of H3 and BMAL1. Finally, using liver-specific SIRT1 mutant mice we show that SIRT1 contributes to circadian control in vivo. We propose that SIRT1 functions as an enzymatic rheostat of circadian function, transducing signals originated by cellular metabolites to the circadian clock.  相似文献   
99.
100.

Background  

Amylin (islet amyloid polypeptide) is a hormone with suggested roles in the regulation of glucose homeostasis, gastric motor and secretory function and gastroprotection. In the gastric mucosa amylin is found co-localised with somatostatin in D-cells. The factors regulating gastric amylin release are unknown. In this study we have investigated the regulation of amylin release from gastric mucosal cells in primary culture. Rabbit fundic mucosal cells enriched for D-cells by counterflow elutriation were cultured for 40 hours. Amylin and somatostatin release over 2 hours in response to agonists were assessed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号